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Abstract

This paper describes a model-based controller for the regulation of a proton exchange membrane (PEM) fuel cell. The model accounts
for spatial dependencies of voltage, current, material flows, and temperatures in the fuel channel. Analysis of the process model shows that
the effective gain of the process undergoes a sign change in the normal operating range of the fuel cell, indicating that it cannot be stabilized
using a linear controller with integral action. Consequently, a nonlinear model-predictive-controller based on a simplified model has been
developed, enabling the use of optimal control to satisfy power demands robustly. The models and controller have been realized in the
MATLAB and SIMULINK environment. Initial results indicate improved performance and robustness when using model-based control in
comparison with that obtained using an adaptive controller.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Fuel cells are chemical engines that convert chemical po-
tential into electrical power. Since they are not based on tem-
perature differences, they are not subjected to Carnot’s limit
of efficiency. In addition, common pollutants such as sulfur
dioxide and nitrous oxides are avoided since the process does
not involve combustion. These advantages, together with the
reduction of greenhouse gases and fuel consumption due to
higher efficiencies and the possibility of alternative energy
sources, have generated enormous interest in fuel cells for
stationary as well as mobile applications.

The heart of the fuel cell system consists of two elec-
trodes: the anode and cathode. The most basic system uses
pure hydrogen as fuel, which is oxidized at the anode, pro-
ducing electrons and protons. The electrons are released to
an external circuit, where they can be used to perform work,
while the protons diffuse through a membrane to the cath-
ode. At the cathode, oxygen reacts with the electrons from
the external circuit and protons from the anode reaction,
forming water. Other systems are being developed, includ-
ing the use of methanol as fuel (fed directly to the fuel cell
[10], or reformed externally to produce hydrogen) and even
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using traditional fossil fuels. Whatever the actual configura-
tion, the basic principles remain the same.

The dynamics of fuel cells are complex and include the
mass transport of materials through the membrane and to
and from the electrodes, reaction mechanisms and rates
at the electrodes, voltages and currents produced depend-
ing on the pressures, temperatures and concentrations at
the electrodes, overpotential and Ohmic losses of voltage
throughout the process. Several alternative models of dif-
ferent complexity have been proposed to describe the per-
formance of fuel cells under an array of conditions (e.g.,
[4,12,8]). These models are then used to evaluate optimal
schemes of external heating, water management[5] and fuel
composition.

The dynamic response of fuel cells is important for vehic-
ular applications, where power demands fluctuate, and the
fuel cell does not usually operate at the optimal steady-state
designed by the fuel cell manufacturer. A empirical model
for the transient response of a fuel cell was developed by
[1]. However, this model is lumped and therefore does not
accurately portray the spatial dependencies in the system.
In a similar fashion Kang et al.[7] present an analysis of
a dynamic model for a molten-carbonate fuel cell (MCFC),
where the system is modeled as a collection of first order
transfer functions with dead times. Pukrushpan et al.[9]
present a nonlinear, zero-dimensional, dynamic model of a
fuel cell, but this model is also empirical.
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Nomenclature

A heat exchange area per unit length (cm)
a water activity
c concentration at membrane surface (mol/cm3)
Cp mass heat capacity (J/(g K))
d channel height (cm)
D diffusion coefficient in diffusion layer (cm2/s)
D0 intradiffusion coefficient of water in

membrane (cm2/s)
D∗ diffusion coefficient of water in

membrane (cm2/s)
e membrane area per unit length (cm)
f cross-section of solid (cm2)
F Faraday’s constant (Col/equivalent)
h channel width (cm)
I current density (A/cm2)
I0 exchange current density (A/cm2)
k heat conduction coefficient (W/(cm K))
kc condensation rate constant (s−1)
kp water permeability (cm2)
L channel length (cm)
M molar flow (mol/s)
Wm,dry membrane dry weight (g/mol)
nd electro-osmotic coefficient of water in

membrane (molecules/protons)
P pressure (atm)
T temperature (K)
tm membrane thickness (cm)
U convective heat transfer coefficient

(W/(cm2 K))
V voltage (V)

Greek symbols
µ Water viscosity (g/(cm s))
α Ratio of water molecules per proton

flux (molecules/protons)
δ Diffusion layer thickness (cm)
�H Enthalpy of overall reaction (J/mol)
�Hvap Enthalpy of water evaporation (J/mol)
ρ Density (g/cm3)
ρm,dry Dry membrane density (g/cm3)
σ Membrane conductivity (Ohm−1 cm−1)

Subscript
a Anode
avg Average
c Cathode
cool Coolant
g Gas
H2 Hydrogen
in Inlet
inf Surroundings
N2 Nitrogen
O2 Oxygen

oc Open circuit
s Solid
set Set point
w Water

Superscript
l Liquid
sat Saturation
v Vapor

This paper focuses on the crucial issue of how to control
the fuel cell to ensure acceptable response time for the power
demand, while achieving high efficiencies over the entire
operating range. To assist in addressing this issue,Section 2
presents a spatial, time-dependent model of a fuel cell. The
analysis of fuel-cell controllability follows, relying on the
developed model, as well as the synthesis of an adaptive
controller, intended to account for the observed sign-change
in the process static gain.Section 3describes an alternative
approach, relying on a reduced-order model, and the use
of the model in a robust model predictive control (MPC)
scheme, which satisfies the power demand over a wide range
of conditions, and is demonstrated to provide performance
superior to that of the adaptive scheme.

2. Model formulation and solution

The model is based on the concept presented by[12],
where a fuel cell is modeled along its channel, as shown
in Fig. 1. The model accounts for heat transfer between
the solid and the two gas channels, and between the solid
and cooling water. The water content is modeled, as well,

Fig. 1. Schematic diagram of fuel cell channel.
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calculating the condensation and evaporation, water drag
through the membrane, and water generation at the cath-
ode. The energy balance on the solid is modeled dynam-
ically whereas all the other equations are assumed to be
at quasi-steady-state for a given solid temperature profile.
Other equations vary slightly from those presented by Yi and
Nguyen, as well. Namely, the heat generation term is taken
from Berger[3], since this term can be easily expressed in
terms of temperature (although this has not been carried out
in the present study).

The dynamics of the electrochemistry, as well as the tran-
sient response of the fluids in the channels (anode cathode
and coolant), are assumed to be instantaneous relative to the
thermal transient response of the solid. Consequently, con-
servation equations that model the entire system, with the
exception of the fuel cell solid support, are formulated in
quasi-steady-state[1]. This greatly reduces the complexity
of the system since it is reduced to a one-dimensional prob-
lem.For a given local current density (A/cm2), the reactants
are consumed as follows
dMH2(x)

dx
= − h

2F
I(x) (1)

dMO2(x)

dx
= − h

4F
I(x) (2)

The change in the flow rate of liquid water in each flow
channel, which is influenced solely by evaporation and con-
densation, is given as

dM l
w,k(x)

dx
= kchd

RTk(x)

{
Mv

w,k(x)∑Nk
i Mi,k(x)

Pk − Psat
w (Tk)

}
,

k = a, c (3)

This implies that the rate of condensation/evaporation is
proportional to the difference between the partial pressure
of water and the saturation pressure at the local tempera-
ture. Note that in the event of no liquid water and a partial
pressure lower than the saturation pressure, this equation
is not valid. (SeeAppendix C on how this is dealt with
during integration). The water vapor in the flow channels
is affected by a number of mechanisms: (a) water vapor
is generated at the cathode by the reaction of oxygen with
the proton and electron; (b) water vapor diffuses through
the membrane; (c) water vapor is dragged through the
membrane by migrating protons (from the anode to the
cathode); (d) liquid water can condense and evaporate based
on the partial pressure of water and the saturated pressure
(temperature-dependent). These mechanisms are included
in the following equation, which models the anode flow
channel

dMv
w,a(x)

dx
= −dM l

w,a(x)

dx
− hα(x)

F
I(x), (4)

where the first term on the right is the condensation or
evaporation of the water and the second is the net migration
of water across the membrane. This net migration is the

combined effect of diffusion by concentration and pressure
gradients along the membrane and water molecules dragged
across the membrane by the current. The ratio of water
molecules per proton,α, is given by

α= nd − F

I(x)
D∗ dcw

dy
− cw

kp

µ

F

I(x)

dPw

dy

≈ nd − F

I(x)
D∗ cw,c − cw,a

tm

− (cw,a + cw,c)

2

kp

µ

F

I(x)

Pw,c − Pw,a

tm
(5)

The water vapor content of the cathode is modeled using
the following equation, which includes the generation of
water by reaction

dMv
w,c(x)

dx
= −dM l

w,c(x)

dx
+ h

2F
I(x) + hα(x)

F
I(x) (6)

The local temperatures in the anode, cathode and coolant
channels are affected by heat transfer between the mass sur-
face and the fluid

dTk(x)

dx
= UgAg{Ts(x) − Tk(x)}∑

i Cp,iMi(x)
, k = a, c (7)

dTcool(x)

dx
= UcoolAcool{Ts(x) − Tcool(x)}

Cp,wMcool
(8)

The cell voltage is inversely proportional to the current den-
sity, and related to the partial pressures of the species, using
the Nernst and Tafel equations[2]

Vcell = Voc + RT

2F
ln




[
PH2,b(x) −

(
δI(x)

2FDH2

)]
×
[
PO2,b(x) −

(
δI(x)

4FDO2

)]0.5

PH2O,b(x) +
(

δI(x)
2FDH2O

)




− RT

F
ln


 I(x)

I0

(
PO2,b(x) − δI(x)

4FDO2

)

− I(x)tm

σm(x)
(9)

This equation is derived as shown inAppendix A. Thus,
the effective cell voltage is the thermodynamically reversible
cell voltage minus the Ohmic, activation and concentration
overpotentials. The partial pressures are simply the molar
ratios multiplied by the electrode pressure

Pi = Mi∑
Mj

P (10)

The following are empirical expressions of the various
constants used in the model equations (following[11])

σm =
(

0.00514
Wm,dry

ρdry
cw,a − 0.00326

)
exp

(
1

303
− 1

Ts

)
(11)
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cw,k=




ρdry

Wm,dry
(0.043+ 17.8ak − 39.85a2

k + 36a3
k)

ak ≤ 1 k = a, c
ρdry

Wm,dry
(14+ 1.4(ak − 1))

ak > 1 k = a, c

(12)

ak = Mv
w,k∑

i Cp,iMi(x)

Pk

Psat(Tk − 273)
, k = a, c (13)

Psat(T) = 10−2.18+2.95×10−2T−9.18×10−5T 2+1.44×10−7T 3

(14)

nd =
{

0.0049+ 2.024aa − 4.53a2
a + 4.09a3

a aa ≤ 1

1.59+ 0.159(aa − 1) aa > 1

(15)

D∗ = ndD0 exp

(
2416

(
1

303
− 1

Ts

))
(16)

�Hvap(T)= 45,070− 41.94T + 3.44× 10−3T 2

+ 2.54810−6T 3 − 8.98× 10−10T 4 (17)

The heart of the model is a spatial, time-dependent partial
differential equation describing the local temperature of the
solid cell support

ρsCps
∂Ts

∂t
= ks

∂2Ts

∂x2
+ UgAg

f
(Ta + Tc − 2Ts)

+ UcoolAcool

f
(Tcool − Ts)− e

f

(
�H

2F
+Vcell

)
I(x)

+ 1

f
�Hvap(T)

(
dM l

w,a(x)

dx
+ dM l

w,c(x)

dx

)
, (18)

with boundary conditions

k
∂Ts

∂x

∣∣∣∣
x=0

= Uc(Ts − Tinf )

k
∂Ts

∂x

∣∣∣∣
x=L

= −Uc(Ts − Tinf )

(19)

Evidently, the channel solid temperature is affected by: (1)
heat transfer by conduction, (2) heat transfer by convection
with the flow and coolant channels, (3) heat generation by
the reaction (total enthalpy change of the reaction (water
formation) minus the external power[3]) and (4) heat of
condensation/evaporation of water in the flow channels. The
boundary conditions, shown inEq. (19), reflect heat losses
to the surroundings from the edges. It is assumed that there
is no heat loss along the channel, since the channel is part
of a large, symmetrical proton exchange membrane (PEM)
stack.

2.1. Solution procedure

Eq. (18)is integrated using the Crank–Nicholson method,
in which the partial differential equation is discretized, re-
sulting in a system of algebraic equations that defines the
dependence between the solid temperature profiles for con-
secutive times. For each time-step in the integration, the
quasi-steady state ODEs (Eqs. (1)–(8)) are integrated, and
the surface temperature profile is calculated for the next
time-step. Full details of the Crank–Nicholson method and
calculations are presented inAppendix D.

During the integration of the ODEs the cell voltage is
set. If the system is modeled for constant voltage, the aver-
age current density is calculated for every time step of the
Crank–Nicholson integration by integrating the values ofI(x)
over x and dividing by the length of the channel. However,
if the system has a set current density, the voltage is guessed
and iteratively manipulated (using the secant method) un-
til the calculated current density converges to the set value.
This procedure is problematic, since there is no guarantee
that the system (with specific flow rates, concentrations and
temperatures) can attain the desired current density. A better
alternative, would be to specify an external load resistance,
Rext, and then match the estimatedVcell with the calculated
value,Vcalc = Iavg,calc × Rext. This equation can always be
fulfilled since it is based on physical behaviors, as opposed
to arbitrary guesses. This has not been implemented in this
paper, to allow for comparison with results in the literature.

The data used for the simulation is based on the study by
Trung and Nguyen (1998), and is presented inTable 1.

The model formulated above constitutes a set of implicit
equations, since, as shown inAppendix D, the equations
depend nonlinearly on the solid temperature. To reduce the
computation time inherent in the implicit formulation, a
partially-explicit approximation was developed as an alter-
native, where the nonlinear expressions of the solid temper-
ature are used explicitly, leading to a linear system for each
time step. To compare the difference between the solutions
obtained using the original implicit formulation with a par-
tially explicit approximation, the system transient is com-
puted starting from a uniform solid temperature of 343 K
using the data from the base case. The evolution of the av-
erage temperature and power density with time for varying
time-step sizes are presented for both methods inFig. 2, not-
ing that the system settles well inside 20 s. As can be seen,
for a step size of 0.1 s, there is no difference in the results
obtained from the two methods. At 0.5 s there is a small dif-
ference between the two, with the implicit method repeating
the results for time step of 0.1 s. Since the implicit method
requires the solution of nonlinear equations, it is more com-
putationally demanding, and, for small step sizes, unneces-
sary.

The spatial dependence of the variables at the end of the
simulation time (i.e. at steady state) can be seen inFig. 3.
The plot shows the computed values indicated by crosses,
with a cubic spline used to indicate the continuous profile.
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Fig. 2. Simulation of system starting from uniform temperature of 70◦C. The evolution of the average temperature and average power density with time
using explicit and implicit Crank–Nicholson for different time steps.
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Fig. 3. Spatial dependencies of variables in channel direction: (a) solid temperature; (b) current density; (c) cathode water vapor flow; (d) cathodewater
liquid flow.
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Table 1
Data for base case presented by Trung and Nguyen

Variable Value

Physical data
Acool (cm) 0.4
Ag (cm) 0.4
d (cm) 0.1
ae (cm) 0.1
af (cm2) 0.0106
h (cm) 0.1
L (cm) 10
tm (cm) 0.01275
aDw (cm2/s) 10−6

aDO2 (cm2/s) 10−6

aDH2 (cm2/s) 10−6

aδ (cm) 0.001
ρm,dry (g/cm3) 2
aρs (g/cm3) 2

Physical parameters
I0 (A/cm2) 0.01
Voc (V) 1.1
D0 (cm2/s) 5.5× 10−7

kc (s−1) 100
kp (cm2) 1.58 × 10−14

µ (g/cm s) 3.565× 10−3

ks (W/cm2K) 0.005
Uc (W/cm2K) 0.025
Ug (W/cm2K) 0.025
Uw (W/cm2K) 0.025
Wm,dry 1100
∆H (J/mol) −2.41 × 105

aCps (J/gK) 1

Operating values for the fuel cell
MH2,in (mol/s) 1.14× 10−5

Mv
w,a,in Saturated

MI
w,a,in (mol/s) 0

Ta,in (K) 353
MO2,in (mol/s) 5.7× 10−6

MI
w,a,in (mol/s) 0

Mv
w,a,in (mol/s) 0

Tc,in (K) 353
Pa (atm) 1
Pc (atm) 1
Tinf (K) 343
Iavg (A/cm2) 1.1

a Denotes data that were estimated for this paper.

Clearly, the distributed variables feature significant special
variation along the channel length.

3. Controllability analysis

To obtain smaller, lighter and cheaper fuel cells, they
should be designed to operate at the highest possible power
density. In this regard,Fig. 4 displays the power–current
relationship for the fuel cell model, operated at constant
flowrates of the feed streams. A similar result is obtained
when using a constant fuel utilization factor.

To provide guidance for the analysis of the system dy-
namics and its controllability, a series of step tests were per-
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Fig. 4. Power–current curve for base case.

formed on the base case system. These step tests are helpful
in determining the influence of various variables on the con-
trolled output. In particular, it is of interest to examine the
influence of the cell voltage on the power density, as shown
in Fig. 5. Note that the response of the power density to
changes in the cell voltage consists of a large initial jump,
followed by a gradual change. The initial response is the
electrochemical dependence, which is instantaneous, having
assumed quasi steady state. The gradual change is due to
the slow transient response of the solid temperature profile,
which affects the electrochemical behavior along with the
quasi-steady-state conditions in the channels. Furthermore,
as can be seen inFig. 5, the response of the power to positive
step changes in the cell voltage depends on the operating
level selected, with the net change of the power density be-
ing either positive at low voltages or negative at high ones.

These changes in the static gain (�P/�V) are reflected
in Fig. 6 where the static gain is plotted as a function of
average current density for two sets of conditions: the base
case and slightly modified conditions: namely, reactant and
oxidant inlet temperatures of 70 and 60◦C, respectively,
and a hydrogen and oxygen inlet flowrates of 1.71× 10−5

and 8.55× 10−6 mol/s, respectively. As can be seen in
Fig. 6, the static gain changes sign for the base case at a
current density of about 0.9 A/cm2. On the other hand, for
the modified conditions, the sign change occurs at a higher
current density-around 1.3 A/cm2. Alternatively, if the cur-
rent density is used as the control variable, the gain be-
tween the power density and the average current density
(�P/�Iavg) must be evaluated, as shown inFig. 7. Once
again, a sign change is evident. For the base case, this occurs
at roughly 1.1 A/cm2. Again, for the modified conditions
the sign change occurs at a different operating point-about
0.85 A/cm2. Note that the static gain changes both in mag-
nitude, but more importantly, in sign as well. In addition,
other variables change the location of the sign change. This
creates severe problems for a control system, since the di-
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Fig. 5. Step tests for base case. In each case, a step change of 0.05 V is implemented, from operating levels: (a)Vcell = 0.15 V, (b) Vcell = 0.40 V, (c)
Vcell = 0.60 V and (d)Vcell = 0.85 V.

rection of the power’s change in response to the control vari-
able (voltage or current density) is not constant and, over
a large part of the operating space, difficult to predict ac-
curately. The sign-change in static gain precludes the use
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Fig. 6. Static gain of power density to changes in cell voltage for base
case and modified conditions.

of a fixed-gain controller with integral action, since such a
controller cannot be stabilized. Two alternative options that
can be made to work are adaptive control and nonlinear
model-based control.

0 0.5 1 1.5 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

G
 
(

∆P
/

∆I
a
v
g
)

Average Current Density

base case
modified

Fig. 7. Static gain of power density to changes in average current density
for base case.
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A simple adaptive controller attempts to compensate for
the changing process gain by adapting itself on the fly. This
is difficult to design since the actual behavior of the process
is dependent on a number of variables (flowrates, compo-
sitions, temperatures, etc.) as demonstrated inFig. 6. Thus,
an adaptive controller that does not account for all of these
inputs will experience difficulties, and consequently, will
have limited performance and robustness. Alternatively, a
fixed-gain controller can be implemented to control the fuel
cell in ranges of operating conditions where a sign change
in the static gain is not expected. There are two problems
with this approach:

1. This kind of system is constantly in danger of straying
into the “instability zone,” and, once the system gets
there, a controller including integral action and previ-
ously stable will become unstable when the process gain
changes direction.

2. The operating conditions chosen to ensure stable opera-
tion are unlikely to be optimal in terms of fuel efficiency
and power density.

A control system that relies on a nonlinear model can
avoid both problems. The model will indicate the actual
influence the control variable will have on the system.
This is the motivation to formulate a model that predicts
the behavior with sufficient accuracy while being simple
enough to enable its use in an on-line optimal control
scheme.

3.1. Adaptive control

When designing a control system, a number of re-
quirements need to be satisfied. The control system must
eliminate disturbances and track changes in the set point
accurately and with sufficient speed. This must be done for
as wide a set of conditions as possible. Also, it is desirable
that the control system be as simple as possible. Therefore,
the design of a simple adaptive controller was attempted
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Fig. 8. Control of set point step changes for base case (left) and modified conditions (right).

first, with the experience serving also as an illustration of
some of the phenomena discussed earlier.

ExaminingFig. 7 reveals the near linear dependency of
the static gain on the current density. Therefore, for control
purposes, a standard PI controller could use an adaptive gain
inversely proportional to the variable process static gain

C(s) = 1

G(Iavg)

1.5s + 1

1.5s(s + 1)

G(Iavg) = −1.333Iavg + 1.466
(20)

To smooth out the otherwise potentially abrupt changes
in the controller gain, the gain value is adjusted using a
low pass filter with a time constant of 1 s.Fig. 8 presents
the performance obtained with this adaptive controller. Note
that it performs nicely for the base case (for which it was
designed), converging within roughly 6 s for positive and
negative step changes in the power density set point. How-
ever, for the modified conditions, it cannot reach the set
point of 0.55 W/cm2 since the controller changes the gain’s
sign at 1.1 A/cm2, instead of at 0.85 A/cm2. Note that the
response for the decrease is more aggressive, with over-
shoot because of the inaccurate value of the static gain that
the controller uses. Full design of a standard controller re-
quires that the uncertainty of the actual process gain be
addressed.

4. Model predictive control

As has been shown, the fuel cell presents a number of con-
trol problems, the most significant of which is the nonlinear-
ity in the vicinity of the peak power density. Furthermore, it
is of interest to ensure efficient operation during transients
and when extreme load changes are imposed. Consequently,
it is proposed to tackle these problems using a nonlinear
model predictive control framework.

Model predictive control is part of a family of optimiza-
tion-based control methods, which are based on on-line
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optimization of future control moves. Using a process model,
the optimizer predicts the effect of past inputs on future out-
puts. Then, using the same model, it computes a sequence
of future control moves, such that an objective function, in-
cluding penalties on the trajectory of predicted tracking er-
ror, is minimized. The first of the future control moves is
implemented, and the entire optimization is repeated from
the next step on, and so on, ad infinitum. Feedback is used
to compensate for the model’s inaccuracies and to ensure
convergence. For a detailed account of nonlinear MPC, the
reader is referred to the excellent review by Henson[6].

The definition of the optimization problem offers enor-
mous advantages for advanced control. Typically, the prob-
lem formulation includes the satisfaction of the set points
for the different output variables (least squared errors). The
optimization problem uses a model of the system to pre-
dict the output variables values and compares them with
the set points. Hence, the performance of the controller is
influenced by the accuracy of the model. In addition, the
optimization problem commonly includes different degrees
of penalty for changes in the control variables. This en-
courages the controller to avoid excessive changes of the
most “expensive” control variables. The advantage of the
flexibility of the optimization problem is apparent. Differ-
ent degrees of importance can be attributed to set point
satisfaction, control variable step size and absolute values
(influencing stability and controller behavior), and other
values of varying importance. For instance, the model’s
prediction of overall efficiency can be taken into considera-
tion. The optimization can be unconstrained or may include
hard constraints (for example safety limits or downstream
demands on the process being controlled).

The first step in designing an MPC system is the derivation
of a model that the controller will use for the optimization.
This model should be as accurate as possible, while being
simple enough to allow for repeated calculations during the
optimization.

4.1. Reduced model – multiple CSTRs

This simplified model neglects the spatial dependence of
the variables in the flow channels. In essence, this assumes
CSTR conditions of the reactants and oxidant, and of the
coolant, as well. Therefore, differentialEqs. (1)–(8)reduce
to the following algebraic equations

MH2 = − hL

2F
Iavg + MH2,in (21)

MO2 = − hL

4F
Iavg + MO2,in (22)

M l
w,k =M l

w,k,in + kchdL

RTk

{
Mv

w,k∑Nk

i Mi,k

Pk − Psat
w (Tk)

}
,

k = a, c (23)

Mv
w,a =Mv

w,a,in − kchdL

RTa

{
Mv

w,a∑Nk

i Mi,a

Pa − Psat
w (Ta)

}

− hLα

F
Iavg (24)

Tk = Tk,in + UgaL(Ts − Tk)∑Nk

i Cp,iMi

, k = a, c (25)

Mv
w,c =Mv

w,c,in − kchdL

RTc

{
Mv

w,c∑Nk

i Mi,c

Pc − Psat
w (Tc)

}

+ hL

F
Iavg

(
1

2
+ α

)
(26)

Tcool = Tcool,in + UcoolbL(Ts − Tcool)

Cp,wMcool
(27)

Similarly, the partial differentialEq. (18)reduces to the
ordinary differential equation

ρsCps
dTs

dt
= Uga

f
(Ta + Tc − 2Ts) + Ucoolb

f
(Tcool − Ts)

− e

f

(
�H

2F
+ Vcell

)
Iavg + 1

fL
�Hvap(Ts)

× (M l
w,a − M l

w,a,in + M l
w,c − M l

w,c,in)

− 2Uinf

L
(Ts − Tinf ) (28)

The current density is the solution ofEq. (9). The solution
method is to solve all the algebraic equations for each time
step of the integration ofEq. (28). The solution of� and
the current density is cascaded in the following fashion, as
shown inFig. 9:

1. Receive the cell voltageVcell.
2. Guess the cell current densityI.
3. Calculate the molar flows of oxygen and hydrogen.
4. Guessα1.
5. Use the solid temperature to calculate the saturated pres-

sure in the anode and cathode (this simplifies the solu-
tion).

6. Calculate the molar flows of the water vapors (see be-
low).

7. Calculate the temperatures of the flow channels.
8. Calculateα and converge (step 4).
9. Calculate the voltage and compare to set voltage

10. Change current accordingly (step 2).

The calculation of the water content in the anode and cath-
ode for a given current density is somewhat tricky.Eqs. (23)
and (24)are appropriate if the liquid and vapor in the chan-
nel are in equilibrium. This means that liquid water remains
in the channel, either by condensation or by only partial
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Fig. 9. Flowchart for the solution of the reduced model.

evaporation of feed liquid water. RearrangingEq. (24) re-
sults in the following expression

−Mv2
w,a +

(
kchdL

RTs
(Psat

w (Ts) − Pa) + Mv
w,a,in − MH2

× −hLα

F
Iavg

)
Mv

w,a +
(

dhkcLMH2Psat(Ts)

RTs

+MH2M
v
w,a,in − hLMH2αIavg

F

)
= 0 (29)

This is easily solved, giving two solutions for the water
vapor content. For the solution to be physically meaningful,
the solution must be greater than zero and noncomplex. The
liquid water is then calculated usingEq. (23). If there is no
physical solution forEq. (29)it means that liquid water is
not in equilibrium with the vapor. In other words, the liquid
flow out of the channel is zero and the water vapor is the sum
of the inlet flow water vapor and liquid water subtracting
the water migrating

Mv
w,a = Mv

w,a,in + M l
w,a,in − hLα

F
Iavg

M l
w,a = 0

(30)

If the result of this calculation is negative vapor flow, it
means that the guessed values of� andI are not feasible, so
for the sake of the calculation,Mv

w,a is taken as zero. The

migrating water is simply the difference between the inlet
flows of water (liquid and vapor) and the outlet flows

migrate= Mv
w,a,in + M l

w,a,in − Mv
w,a − M l

w,a (31)

This value is then used in the calculation for the water
content of the cathode. In a similar fashion to the anode,
Eq. (26)is rearranged to give

−Mv2

w,c +
(
Mv

w,c,in − MN2 − MO2 − kchdL

RTs
(Pc − Psat

w (Ts))

+migrate+ hL

2F
Iavg

)
Mv

w,a +
(
kchdL

RTs
Psat

w (Ts) + Mv
w,c,in

+ migrate+ hL

2F
Iavg

)
(MN2 + MO2) = 0 (32)

whose solution is used inEq. (23) to calculate the liquid
water flow in the cathode. Once again, if neither result of
Eq. (32)is physically feasible, the liquid flow is zero, and
the vapor flow is calculated using

Mv
w,a = Mv

w,a,in + M l
w,a,in + migrate+ hL

2F
Iavg

M l
w,a = 0

(33)

Note that this includes water vapor generated by the re-
action.

At high current densities, there are problems converging
the current, since it assumed that there is no pressure drop
in the channel. Obviously, if gas molecules are depleted
(by reaction and condensation), the pressure will drop, as
well. This causes problems since if the total pressure drops,
the partial pressures drop, as well. Otherwise, the partial
pressures are dependent solely on theratios between the
components. Therefore, the partial pressures are calculated
using

Pi = Mi∑
Mi

Ptot (34)

Assuming ideal gases, we can use

Ptot

Pref
= T

∑
Mi

Tref
∑

Mi,ref
(35)

to relate the pressure to the temperature and mole flows in
the channel. This results in

Pi = TMi

Tref
∑

Mi,ref
Pref (36)

which expresses the dependence of the partial pressures of
the components on the mole flows and the temperature in
the channels. The reference values are those at the channel
inlet.

This model assumes uniform conditions at all points in the
channel. If this leads to unsatisfactory accuracy, dividing the
system into a number of consecutive CSTRs can incorporate
a certain amount of spatial dependence. In this case, the
output of one is the input of the next. The assumptions used
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Fig. 10. Comparison of the full model between the multiple CSTR model using 100 CSTRs with no heat conduction – the average current density vs.
time and the current density profile at steady state.

in this model are:

1. There is no heat transfer by conduction between two
neighboring cells.

2. Heat is only lost to the surroundings from the two outer-
most CSTRs.

3. The inlet temperatures are used to calculate the saturated
pressures and the physical parameters in the channels.
This is done because the water flow depends on the chan-
nel temperatures (condensation). The current, in turn, de-
pends on the water content, and the temperatures depend
on the current. If the inlet temperatures weren’t used, the
result would be a nonlinear equation.

4.1.1. Results
The following results display the reduced model’s ability

to predict the behavior of the full-order model. First, it is
necessary to ensure that the CSTR model is appropriate by
comparing the full model with a large number of CSTRs. We
expect that the two models predict identical profiles of the
temperatures and concentrations for any given solid temper-
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Fig. 11. Open loop response to a step change in the current density from
0.5 to 0.8 A/cm2.

ature profile. When considering the transient behavior over
time, it is important to realize that the multiple CSTR model
will not agree entirely with the full model, since it does not
account for heat exchange by conduction like the full model.
The asymptotic case is if the heat transfer by conduction co-
efficient is zero or negligible. The results of the full model
and the multiple CSTR are presented inFig. 10. As can be
seen, the two models are in excellent agreement.

It is important for the model to accurately predict the tran-
sient, open loop behavior of a fuel cell under varying condi-
tions, since the performance of a control system relying on
this model depends directly on the model’s fidelity.Fig. 11
compares open loop response of the system to a step change
in the current density from an initial value of 0.5 A/cm2 to
0.8 A/cm2 using the full model and the reduced model using
varying numbers of CSTRs.Fig. 12shows the same behav-
ior for a current density step change from 1.1 to 1.4 A/cm2.

As can be seen, the prediction capabilities of the reduced
model are greater at low current densities than at high densi-
ties. This makes sense since the spatial dependencies exhibit
significantly higher variation at higher values of current
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density, and the reduced model neglects this variation. In
Fig. 12, one can see that the 10-CSTR model, while failing
to predict the value accurately, still retains the characteristic
behavior nicely, whereas the single CSTR model accurately
predicts the steady state change in power density. This is
important to remember when discussing model-based con-
trol, since the quality of the controller depends directly on
the quality of the model.

4.2. Amphlett-based reduced model

The solution of the previously mentioned model for a 20 s
horizon occupies 2 s of CPU time on a 2.4 GHz computer.
This is clearly too slow for practical purposes, since this
calculation is at the heart of the MPC objective function.
Moreover, there is no way to calculate an analytical gradient
for the optimizer forcing the optimizer to calculate one nu-
merically, at each iteration. Therefore, a new method is in-
troduced, based on Amphlett[1], where the current density
is set, and the cell voltage is calculated. Amphlett used ma-
terial and energy balances coupled with a parametric model,
which forecasts the electrochemical behavior to model the
dynamics of a fuel cell. This paper usesEqs. (9)–(16)to
predict the electrochemical conditions. As the model sup-
ports no spatial variation, it is good only for a single CSTR
description of a fuel cell.

In this method, the current density is set and the only it-
erations performed provide the solution of the water content
as demonstrated previously. In this formulation, the input
variable is the current density, and once the water content is
established for that current density, the voltage can be ex-
plicitly calculated usingEq. (9).

4.2.1. Results
Fig. 13 demonstrates that the Amphlett-based model is

identical to the 1-cell CSTR model. In this example the
current density is changed from 0.9 to 1.1 A/cm2.

As can be seen, the two methods are in complete agree-
ment. This is hardly surprising since the two methods rely on
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Fig. 13. Comparison of Amphlett based model and 1 CSTR.

identical equations and assumptions, differing only in nume-
rical approach. Note that Amphlett’s approach is significa-
ntly faster, but cannot be expanded to more than one CSTR.

4.3. The optimization problem

The objective function for the MPC controller is the min-
imization of the sum of squared errors between the desired
set point and the actual trajectory of the power output, with
an additional penalty imposed on rapid changes in the ma-
nipulated variables

f(u)=
∫ th

0

[
W(t)(P(u, t) − Pset(t))

2

+
∑
i

Si(t)

(
dui
dt

)2
]

dt (37)

The weight functionsW and Si are used to increase the
importance of specific variables at given instances. For ex-
ample, the weights may increase over time to ensure rapid
convergence with no offset. The function is discretized over
time, obtaining the following algebraic function

f(u) = (P(u) − Pset)
T W(P(u) − Pset) +

∑
i

dui
T Sidui

(38)

The vectorP(u) is the actual value of the power density
at the different time steps in the prediction horizon, while
elementi of vector du is the value ofu at time stepi minus
its value at time stepi − 1.

Note that the actual variables in the optimization are the
changes in values from each time step to the next. This
means that the value ofu at time stepi is simply the initial
value ofu plus all the values ofdu up to time stepi.

4.3.1. Results
Fig. 14shows the performance obtained with MPC for the

modified conditions of the base case as inFig. 8(using adap-
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Fig. 14. MPC response for modified conditions of base case.
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Fig. 15. MPC response for modified conditions of base case to power
density of 0.54 W/cm2.

tive control). As before, the current density cannot satisfy the
increase in power demand, but this time, the controller does
not experience loss of stability. Furthermore, the response
of MPC in tracking a demand to decrease the power output
performs significantly better than the adaptive controller. In
Fig. 8, there is a noticeable overshoot because of the process
gain uncertainties, whereas the MPC controller drops the
power density to the required level in only three seconds, de-
spite the model uncertainties. It is important to note that the
observed phase lag in the MPC response in due to the fact
that the solution to the MPC optimization problem is only
implemented at the next control step.Fig. 15demonstrates
the effectiveness of MPC when operating in the vicinity of
the sign change in static gain. Recall that the sign change
for the modified conditions occurs at 0.85 A/cm2. As seen
in Fig. 15, the control variable, the current density, crosses
that value with no ill effects.

Figs. 16 and 17demonstrate the multivariable capabilities
of MPC. Here, both the current density and the coolant inlet
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Fig. 16. Multivariable control using the current density and coolant inlet
temperature.

0 10 20 30 40
0.2

0.4

0.6

P
 
[
W
/
c
m
2
]

0 10 20 30 40
0.8

1

1.2

1.4

I
a
v
g
 
[
A
m
p
/
c
m
2
]

0 10 20 30 40
320

340

360

T
w
,
i
n

time [sec]

Fig. 17. Multivariable control forPset = 0.6 W/cm2.

temperature are used as control variables.Fig. 16shows the
performance to the same set point changes as seen inFig. 15,
in which only current density is used. Comparing the results,
it can be concluded that the addition of the coolant tem-
perature increases the complexity of the controller without
contributing to the performance. On the other hand,Fig. 17
shows that the coolant temperature can be used to enable the
system to reach values that would otherwise be out of reach.
Fig. 14shows that the current density alone can not force the
system to reach 0.6 W/cm2, whereas using both variables, as
in Fig. 17, the system reaches the set point in five seconds.

5. Conclusions

A detailed model of a fuel cell and its simulation has iden-
tified severe nonlinearities in the response to a change in the
current density. The sign change of the static gain, which
occurs within the normal operating range of the device, to-
gether with the uncertainty of the precise location at which
this occurs, indicate that nonlinear control is required to ad-
equately regulate the power output of the fuel cell in the
case of drastic load changes. Use of nonlinear model pre-
dictive control enables accurate control in the case of such
uncertainties, with multivariable control improving perfor-
mance. The use of the MPC algorithm for fuel efficiency
while satisfying load-change demands is work in progress.
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Appendix A. Derivation of the electrochemical
equations

The voltage of the cell as a function of the current density
can be evaluated as follows

Vcell = Voc − η(x) − I(x)tm

σm(x)
, (39)

where the first term on the right is the open circuit potential.
Yi and Nguyen assumed a constant open circuit potential,
since their analysis was under isothermal conditions. How-
ever, since this equation will be used under transient condi-
tions, the Nernst equation is used to account for temperature
and species compositions

Voc = V 0
oc + RT

2F
ln

(
PH2P

0.5
O2

PH2O

)
(40)

The second term is the activation overpotential. It is de-
rived from the Butler–Volmer equation[2] for the case where
the second expression (anodic) can be neglected (high cur-
rent densities/overpotentials)

I = I0

[
CO2,s(x)

CO2,b(x)
exp

(−αFη(x)

RT

)

− CH2,s(x)

CH2,b(x)
exp

(
(1 − α)Fηx

RT

)]
(41)

In fuel cells, the overpotential is mainly at the cathode so
the Tafel equation can be used

η(x) = RTs

0.5αF
ln

(
I(x)

I0PO2(x)

)
≈ RTs

F
ln

(
I(x)

I0PO2(x)

)
,

(42)

whereI0 is the exchange current density.
Yi and Nguyen used the bulk oxygen partial pressure as

the partial pressure at the surface

Vcell = V 0
oc + RT

2F
ln

(
PH2P

1/2
O2

PH2O

)

− RTs

F
ln

(
I(x)

I0PO2(x)

)
− I(x)tm

σm(x)
(43)

This should be changed, since the concentration overpo-
tential is not taken into account. Assuming constant diffu-
sion coefficient in the gas,D, and a diffusion layer thickness
δ, we can say that at steady state conditions the oxygen ap-
proaching the surface is equal to the oxygen reacting

−D
d2PO2

dy2
= 0 ⇒ dPO2

dy
= const (44)

However, bulk and surface pressures can be defined. Inte-
grating yields:

PO2(x, y) = PO2,s(x) + PO2(x, δ) − PO2,s(x)

δ
y (45)

and

dPO2(x, y)

dy
= PO2,b(x) − PO2,s(x)

δ
(46)

Thus, comparing the oxygen approaching and being con-
sumed at the surface

−D
PO2(x, δ) − PO2,s(x)

δ
= −I(x)

4F
(47)

and isolating

PO2,s(x) = PO2,b(x) − δI(x)

4FD
(48)

In the same fashion

PH2,s(x) = PH2,b(x) − δI(x)

2FDH2

PH2O,s(x) = PH2O,b(x) + δI(x)

2FDH2O

(49)

This is inserted intoEq. (43)giving

Vcell = V 0
oc + RT

2F
ln




[
PH2,b(x) −

(
δI(x)

2FDH2

)]
[
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(
δI(x)

4FDO2

)]0.5

PH2O,b(x) +
(

δI(x)
2FDH2O

)




− RT

F
ln


 I(x)

I0(PO2,b(x) −
(

δI(x)
4FDO2

)

− I(x)tm

σm(x)
(9)

It is clear that as the current increases, the cell voltage
decreases. The voltage on the electrodes must be constant
owing to the high conductivities of the electrodes.

Appendix B. Solution of current density

Eq. (9) is a relatively difficult equation to solve numeri-
cally for I(x), since it does not behave nicely at low num-
bers and negative numbers are not acceptable. Neglecting the
concentration overpotential results in an easier expression
to solve. Taking an exponent of both sides and rearranging
we can define

f(I)≡
[
I(x)

I0

]2

exp

((
Vcell − V 0

oc + I(x)tm

σm(x)

)
2F

RT

)

− PH2P
5/2
O2

PH2O
= 0 (50)

Each point along the channel must satisfy this equation.
This is a relatively easy function to solve, since its first and
second derivatives are unconditionally positive
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df

dI
= 2

1

I0
exp

((
Vcell − V 0

oc + I(x)tm

σm(x)

)
2F

RT

)

×
[
I(x) + I(x)2

tm

σm(x)

F

RT

]
(51)

This type of function is well-suited to Newton’s method,
which converges very quickly. In any case the solver backs
up Newton’s method with bisection iterations.

If the concentration overpotential is not neglected,Eq. (9)
is manipulated to give

f(I(x))=
(
PH2,b(x) − δI(x)

2FDH2

)(
PO2,b(x) − δI(x)

4FDO2

)2.5

− I(x)2

I2
0

(
PH2O,b(x) + δI(x)

2FDH2O

)

× exp

((
Vcell − V 0

oc + I(x)tm

σm(x)

)
2F

RT

)
= 0

(53)

whose first derivative

df

dI
= − I(x)2δ exp(2F/RT(Vcell − V 0

oc + (I(x)tm/σm(x))))

2DH2OFI2
0

−
2I(x) exp(2F/RT(Vcell − V 0

oc + (I(x)tm/σm(x))))

(PH2O,b(x) + (δI(x)/2FDH2O))

I2
0

−
0.625δ(PH2,b(x) − (δI(x)/2FDH2))(PO2,b(x)

−(δI(x)/4FDO2))
1.5

DO2F

− δ(PO2,b(x) − (δI(x)/4FDO2))
2.5

2DH2F

−
2I(x)2 exp(2F/RT(Vcell − V 0

oc + (I(x)tm/σm(x))))

Ftm(PH2O,b(x) + (δI(x)/2FDH2O))

I0
2RTσm(x)

(54)

is unconditionally negative. The second derivative, however,
may change signs, which can be problematic for Newton’s
method of solution. Consequently, Newton’s method may
experience convergence problems, depending on the values
in the equation, and should be protected using bisection
iterations.

As said before, this value ofI(x) is used in the ODEs.
Since the membrane conductivity,σ, temperatures and con-
centrations change along the channel, the local current den-
sity will vary, as well. Note that since all the changes are
continuous, the previous solution forI(x) is an excellent ini-
tial guess forI(x + dx).

Appendix C. Resolving problems when integrating
along the channel

As stated inSection 2, numerical solution of the system
equations presents several challenges. Firstly, the system

equations as formulated depend on whether or not liquid
water is present in the channel. Obviously, if liquid water
is not present there can be no evaporation regardless of the
vapor partial pressure. The simple solution of adding a logi-
cal switching condition introduces stiffness to the ODEs be-
ing solved, which can easily lead to unstable or oscillatory
numerical solutions. Instead, the ODE solver implemented
uses MATLAB’s “events” option, which checks for a num-
ber of situations:

1. Cathode or anode liquid reaches zero.
2. Cathode or anode vapor partial pressure reaches its sat-

urated pressure.

In each case, the ODE solver terminates the integration,
returning the calculations up to that point and restarts cal-
culation with a different set of ODEs. For example, if there
is no liquid water in the cathode and the vapor pressure is
below saturation,Eq. (3)is not used. When the cathode be-
comes saturated, the integration terminates and is restarted
from the same point, this time usingEq. (3).

In addition, it is noted that the system of equations in-
volves variables with scales of several orders of magnitude
apart-namely, the temperatures are in K of o(102) while mo-
lar flow rates are in mol/s of o(10−6), which again leads
to problems in their numerical solution. This is resolved by
scaling all molar flowrates using the value of the inlet molar
flow of hydrogen, and all temperatures using the tempera-
ture of the solid atx = 0, for example

MH2(x) = MH2(0)MH2,scaled(x)

Ta(x) = Ts(0)Ta,scaled(x)

The ODEs used in the actual integration are modified to
use the scaled variables.

Appendix D. Solution of transient PDE

The transient PDE describing the temperature profile of
the solid in the channel direction (Eq. (18)) is solved using
the Crank-Nicholson method. This method approximates the
partial differentials by finite differences, resulting in a sys-
tem of algebraic equations, which describe the dependence
of the temperature profile at timej + 1 on the profile at time
j. This system is solved starting at the initial conditions, with
each solution giving the temperature profile at the next time
step.

Introducing the following expressions

Y = β1(Ta + Tc) + β2Tw

M = M l
w,a,i+1 − M l

w,a,i−1 + M l
w,c,i+1 − M l

w,c,i−1
(55)
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Eq. (17)becomes

Ts,i,j+1 − Ts,i,j

�t
= α

Ts,i+1,j+1/2 − 2Ts,i,j+1/2 + Ts,i−1,j+1/2

�x2

+Yi,j+1/2 − γTs,i,j+1/2 − ε

(
�H

2F
+ Vcell

)

× Ii,j+1/2 + φ

2�x
�Hvap(Ti,j+1/2)Mi,j+1/2

(56)

Inserting expressions for the solutions on the “half-way
point” in terms of values on the solution grid

Ts,i+1,j+1/2 ≈ Ts,i+1,j+1 + Ts,i+1,j

2
,

Ts,i,j+1/2 ≈ Ts,i,j+1 + Ts,i,j

2
,

Ts,i−1,j+1/2 ≈ Ts,i−1,j+1 + Ts,i−1,j

2
,

(57)

and rearranging gives

−αTs,i+1,j+1 +
(

2�x2

�t
+ 2α + γ�x2

)
Ts,i,j+1 − αTs,i−1,j+1

= αTs,i+1,j +
(

2�x2

�t
− 2α − γ�x2

)
Ts,i,j

+αTs,i−1,j + 2�x2Yi,j+1/2 − 2�x2ε

(
�H

2F
+ Vcell

)

× Ii,j+1/2 + φ�x�Hvap(Ti,j+1/2)Mi,j+1/2 (58)

Recall thatY andI are calculations based onTs. Solving
this entire system implicitly requires iterations of guessing
the profile ofTs at time j + 1, calculatingY and I at time
j + 1, and inserting them into the equation. The right hand
side will then be a vector, and the linear system can be solved
resulting in a calculated profile forTs. The guess forTs can
then be iteratively updated, until the solution forTs at time
j + 1 converges.

Alternatively, Y and I can be used explicitly, in which
case the linear system can be solved immediately. In this

case, a small step size should be used, to ensure stabil-
ity. Discretizing Eq. (19) for the edges and rearranging
gives

−(3k + 2�xUc)Ts,1,j+1 + 4kTs,2,j+1 − kTs,3,j+1
= −2�xUcTinf

kTs,n−2,j+1 − 4kTs,n−1,j+1 + (3k + 2�xUc)Ts,n,j+1
= 2�xUcTinf

(59)

Arranging all the equations into matrix form and defining
matricesA andB, and vectorC:

A =




−(3k + 2�xUc) 4k −k 0 · · · 0

. . .
. . .

. . . 0 · · · 0

0 −α
2�x2

�t
+ 2α + γ�x2 −α 0

...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

0 · · · 0 k −4k 3k + 2�xUc




(60)

B =




0 0 0 0 · · · 0

α
. . . α 0 · · · 0

0 α

(
2�x2

�t
− 2α − γ�x2

)
α 0

...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . . α
. . . α

0 · · · 0 0 0 0



(61)

C = 2�x2




0

Y2,j

...

Yn−1,j

0




− 2�x2ε

(
�H

2F
+ Vcell

)



0

I2,j

...

In−1,j

0




+




−2�xUcTinf

0
...

0

2�xUcTinf




+ φ�x




0

�Hvap(T2,j)M2,j

...

�Hvap(Tn−1,j)Mn−1,j

0




(62)

The linear system can then be written as

ATj+1 = BTj + C (63)

Note that matricesA andB remain constant for all times
and onlyC needs to be updated from time step to time step.
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If the system is to be integrated implicitly, Eq. (58) be-
comes

−αTs,i+1,j+1 +
(

2�x2

�t
+ 2α + γ�x2

)
Ts,i,j+1 − αTs,i−1,j+1

= αTs,i+1,j +
(

2�x2

�t
− 2α − γ�x2

)
Ts,i,j

+αTs,i−1,j + �x2Yi,j+1 + �x2Yi,j − �x2ε

×
(
�H

2F
+ Vcell

)
Ii,j+1 − �x2ε

(
�H

2F
+ Vcell

)
Ii,j

+ φ�x

2
�Hvap(Ti,j+1)Mi,j+1 + φ�x

2
�Hvap(Ti,j)Mi,j

(64)

In which case

C =�x2




0

Y2,j

...

Yn−1,j

0




− �x2ε

(
�H

2F
+ Vcell

)



0

I2,j

...

In−1,j

0




+




−2�xUcTinf

0
...

0

2�xUcTinf




+ φ�x

2




0

�Hvap(T2,j)M2,j

...

�Hvap(Tn−1,j)Mn−1,j

0




(65)

D(Tj+1)≡�x2




0

Y2,j+1

...

Yn−1,j+1

0




− �x2ε

(
�H

2F
+ Vcell

)

×




0

I2,j+1

...

In−1,j+1

0




+




−2�xUcTinf

0
...

0

2�xUcTinf




+ φ�x

2




0

�Hvap(Ti,j+1)Mi,j+1

...

�Hvap(Ti,j+1)Mi,j+1

0




(66)

The nonlinear set of equations is

ATs,j+1 + D(Ts,j+1) = BTs,j + C(Ts,j) (67)

This is solved using a relaxed successive substitution
method where

Ts,j+1 = f(Ts,j+1) = A−1(BTs,j + C(Ts,j) − D(Ts,j+1))

(68)

This can be accelerated or damped using Wegstein’s
method.
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